On Nonconvex Quadratic Programming with Box Constraints

نویسندگان

  • Samuel Burer
  • Adam N. Letchford
چکیده

Non-Convex Quadratic Programming with Box Constraints is a fundamental NP-hard global optimisation problem. Recently, some authors have studied a certain family of convex sets associated with this problem. We prove several fundamental results concerned with these convex sets: we determine their dimension, characterise their extreme points and vertices, show their invariance under certain affine transformations, and show that various linear inequalities induce facets. We also show that the sets are closely related to the boolean quadric polytope, a fundamental polytope in the field of polyhedral combinatorics. Finally, we present a ‘recursive’ result that enables one to interpret certain complex valid inequalities in terms of simpler valid inequalities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An iterative method for tri-level quadratic fractional programming problems using fuzzy goal programming approach

Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of pro...

متن کامل

Solving Box-Constrained Nonconvex Quadratic Programs

We present effective computational techniques for solving nonconvex quadratic programs with box constraints (BoxQP). We first observe that cutting planes obtained from the Boolean Quadric Polytope (BQP) are computationally effective at reducing the optimality gap of BoxQP. We next show that the Chvátal-Gomory closure of the BQP is given by the odd-cycle inequalities even when the underlying gra...

متن کامل

A Barrier Function Method for the Nonconvex Quadratic Programming Problem with Box Constraints

Abstract. In this paper a barrier function method is proposed for approximating a solution of the nonconvex quadratic programming problem with box constraints. The method attempts to produce a solution of good quality by following a path as the barrier parameter decreases from a sufficiently large positive number. For a given value of the barrier parameter, the method searches for a minimum poi...

متن کامل

Solutions and optimality criteria for nonconvex constrained global optimization problems with connections between canonical and Lagrangian duality

Abstract This paper presents a canonical duality theory for solving a general nonconvex 1 quadratic minimization problem with nonconvex constraints. By using the canonical dual 2 transformation developed by the first author, the nonconvex primal problem can be con3 verted into a canonical dual problem with zero duality gap. A general analytical solution 4 form is obtained. Both global and local...

متن کامل

Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound

We consider a recent branch-and-bound algorithm of the authors for nonconvex quadratic programming. The algorithm is characterized by its use of semidefinite relaxations within a finite branching scheme. In this paper, we specialize the algorithm to the box-constrained case and study its implementation, which is shown to be a state-of-the-art method for globally solving box-constrained nonconve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2009